किसी अनंत गुणोत्तर श्रेणी का योग $3$ है तथा श्रेणी के पदों के वर्गों का योग भी $3$ है, तो श्रेणी होगी  

  • A

    $\frac{3}{2},\frac{3}{4},\frac{3}{8},\frac{3}{{16}},.....$

  • B

    $\frac{1}{2},\frac{1}{4},\frac{1}{8},\frac{1}{{16}},.....$

  • C

    $\frac{1}{3},\frac{1}{9},\frac{1}{{27}},\frac{1}{{81}},.....$

  • D

    $1, - \frac{1}{3},\,\frac{1}{{{3^2}}}, - \frac{1}{{{3^3}}},.....$

Similar Questions

यदि गुणोत्तर श्रेणी ${a_1},\;{a_2},\;{a_3},..........$ का प्रथम पद इकाई इस प्रकार है कि $4{a_2} + 5{a_3}$ न्यूनतम है, तब गुणोत्तर श्रेणी का सार्व-अनुपात है

यदि गुणोत्तर श्रेणी का चौथा, सातवाँ और दसवाँ पद क्रमश: $a, b$ और $c$ हों, तो $a,\;b,\;c$ में सम्बन्ध होगा

यदि $x,{G_1},{G_2},\;y$ किसी गुणोत्तर श्रेणी के क्रमागत पद हैं, तो  ${G_1}\,{G_2}$ का मान होगा

$n$ का मान ज्ञात कीजिए ताकि $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}, a$ तथा $b$ के बीच गुणोत्तर माध्य हो।

यदि किसी गुणोत्तर श्रेणी के प्रथम $3$ पदों का योग तथा प्रथम $6$ पदों के योग का अनुपात $125 : 152$ हो, तो सार्वनिष्पत्ति है