गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।

एक गुणोत्तर श्रेणी के तीन पदों का योगफल $\frac{39}{10}$ हैं तथा उनका गुणनफल $1$ है। सार्व अनुपात तथा पदों को ज्ञात कीजिए

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $\frac{a}{r}, a,$ ar be the first three terms of the $G.P.$

$\frac{a}{r}+a+a r=\frac{39}{10}$        ..........$(1)$

$\left(\frac{a}{r}\right)(a)(a r)=1$         .........$(2)$

From $(2),$ we Obtain $a^{3}=1$

$\Rightarrow a=1$ (Considering real roots only)

Substituting $a=1$ in equation $(1),$ we obtain

$\frac{1}{r}+1+r=\frac{39}{10}$

$\Rightarrow 1+r+r^{2}=\frac{39}{10} r$

$\Rightarrow 10+10 r+10 r^{2}-39 r=0$

$\Rightarrow 10 r^{2}-29 r+10=0$

$\Rightarrow 10 r^{2}-25 r-4 r+10=0$

$\Rightarrow 5 r(2 r-5)-2(2 r-5)=0$

$\Rightarrow(5 r-2)(2 r-5)=0$

$\Rightarrow r=\frac{2}{5}$ or $\frac{5}{2}$

Thus, the three terms of $G.P.$ are $\frac{5}{2}, 1$ and $\frac{2}{5}$

Similar Questions

किसी गुणोत्तर श्रेणी का चौथा पद उसके दूसरे पद का वर्ग है तथा प्रथम पद $-3$ है तो $7$ वाँ पद ज्ञात कीजिए।

गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।

$1,-a, a^{2},-a^{3}, \ldots n$ पदों तक (यदि $a \neq-1)$

माना $n =1,2, \ldots ., 50$ के लिए, अनन्त गुणोत्तर श्रेणी का योगफल $S _{ n }$ है जिसका प्रथम पद $n ^2$ तथा जिसका सार्व अनुपात $\frac{1}{(n+1)^2}$ है। तब $\frac{1}{26}+\sum_{ n =1}^{50}\left( S _{ n }+\frac{2}{ n +1}- n -1\right)$ का मान है

  • [JEE MAIN 2022]

एक गुणोत्तर श्रेणी का तीसरा पद, पहले पद का वर्ग है। यदि दूसरा पद $8$ है, तब छँठा पद है

गुणोत्तर श्रेणी $5, - \frac{5}{2},\frac{5}{4}, - \frac{5}{8},...$ का $n$ वाँ पद$\frac{5}{{1024}}$ हो, तो $n$ का मान होगा