अनंत गुणोत्तर श्रेणी $\frac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}},\frac{1}{{2 - \sqrt 2 }},\frac{1}{2}.....$ के पदों का योग होगा
$\sqrt 2 {(\sqrt 2 + 1)^2}$
${(\sqrt 2 + 1)^2}$
$5\sqrt 2 $
$3\sqrt 2 + \sqrt 5 $
किसी गुणोत्तर श्रेणी के कुछ पदों का योग $728$ है। यदि सार्वानुपात $3$ तथा अंतिम पद $486$ हो, तो श्रेणी का प्रथम पद होगा
एक अनुक्रम $ < {a_n} > \;$ के लिये ${a_1} = 2$ तथा $\frac{{{a_{n + 1}}}}{{{a_n}}} = \frac{1}{3}$, तब $\sum\limits_{r = 1}^{20} {{a_r}} $ है
यदि किसी गुणोत्तर श्रेणी के तीन क्रमागत पदों का गुणनफल $216$ एवं दो-दो को लेकर उनके गुणनफलों का योग $156$ है, तो संख्यायें होंगी
यदि किसी गुणोत्तर श्रेणी का प्रथम पद $7$, अंतिम पद $448$ तथा पदों का योग $889$ हो, तो श्रेणी का सार्वानुपात होगा
$\overline {0.037} $ का मान, जहाँ $\overline {.037} $ संख्या $0.037037037........$ को निरूपित करता है