7.Binomial Theorem
normal

 $(1+x)^{15}$ ના વિસ્તરણમાં છેલ્લા આઠ ક્રમિક પદોના સહગુણકનો સરવાળો મેળવો 

A

$2^{15}$

B

$2^{14}$

C

$2^{16}$

D

$2^8$

Solution

Sum of last eight coefficient are

${\rm{S}} = {15_{{C_8}}} + {15_{{{\rm{C}}_9}}} + {15_{{{\rm{C}}_{10}}}} +  \ldots  \ldots  + {15_{{{\rm{C}}_{15}}}}$          …….$(i)$

${\rm{S}} = {15_{{C_7}}} + {15_{{C_6}}} + {15_{{C_5}}}, +  \ldots  \ldots  + {15_{{{\rm{C}}_0}}}$              ……..$(ii)$

(We know that ${{{15}_{{{\rm{C}}_8}}} = {{15}_{{{\rm{C}}_7}}}}$)

equation $(i) + (ii)$

$2{\rm{S}} = {15_{{C_0}}} + {15_{{C_1}}} + {15_{{C_2}}} +  \ldots  \ldots  + {15_{{C_{15}}}}$

$\Rightarrow 2 \mathrm{S}=2^{15} \Rightarrow \mathrm{S}=2^{14}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.