7.Binomial Theorem
hard

જો ગુણાકાર $\left(1+x+x^{2}+\ldots+x^{2 n}\right)\left(1-x+x^{2}-x^{3}+\ldots+x^{2 n}\right)$ માં $x$ ની બધીજ યુગ્મ ઘાતાંકનો સરવાળો $61,$ હોય તો  $\mathrm{n}$ મેળવો.

A

$30$

B

$26$

C

$22$

D

$20$

(JEE MAIN-2020)

Solution

Let $\left(1+x+x^{2}+\ldots+x^{2 n}\right)\left(1-x+x^{2}-x^{3}+\ldots+x^{2 n}\right)$

$=a_{0}+a_{1} x_{+} a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\ldots+a_{4 n} x^{4 n}$

$\mathrm{So}$

$a_{0}+a_{1}+a_{2}+\ldots+a_{4 n}=2 n+1$

$a_{0}-a_{1}+a_{2}-a_{3} \ldots+a_{4 n}=2 n+1$

$\Rightarrow a_{0}+a_{2}+a_{4}+\ldots+a_{4 n}=2 n+1$

$\Rightarrow 2 \mathrm{n}+1=61 \quad \Rightarrow \mathrm{n}=30$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.