The sum of the binomial coefficients of ${\left[ {2\,x\,\, + \,\,\frac{1}{x}} \right]^n}$ is equal to $256$ . The constant term in the expansion is

  • A

    $1120$

  • B

    $2110$

  • C

    $1210$

  • D

    none

Similar Questions

In the expansion of ${\left( {\frac{{x\,\, + \,\,1}}{{{x^{\frac{2}{3}}}\,\, - \,\,{x^{\frac{1}{3}}}\,\, + \,\,1}}\,\, - \,\,\frac{{x\,\, - \,\,1}}{{x\,\, - \,\,{x^{\frac{1}{2}}}}}} \right)^{10}}$, the term which does not contain $x$ is :

Coefficient of $x^3$ in the expansion of $(x^2 - x + 1)^{10} (x^2 + 1 )^{15}$ is equal to

The term independent of $x$ in the binomial expansion of $\left( {1 - \frac{1}{x} + 3{x^5}} \right){\left( {2{x^2} - \frac{1}{x}} \right)^8}$ is

  • [JEE MAIN 2015]

The term independent of ' $x$ ' in the expansion of $\left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right)^{10}$, where $x \neq 0,1$ is equal to $.....$

  • [JEE MAIN 2021]

The term independent of $x$ in ${\left( {2x - \frac{1}{{2{x^2}}}} \right)^{12}}$is