${\left( {x + \sqrt {{x^3} - 1} } \right)^5} + {\left( {x - \sqrt {{x^3} - 1} } \right)^5},\left( {x > 1} \right)$ ના વિસ્તરણમાં એકી ઘાતવાળા તમામ પદોનાં સહગુણકોનો સરવાળો . . . . છે.
$0$
$1$
$2$
$-1$
જો ${\sum\limits_{i = 1}^{20} {\left( {\frac{{{}^{20}{C_{i - 1}}}}{{{}^{20}{C_i} + {}^{20}{C_{i - 1}}}}} \right)} ^3}\, = \frac{k}{{21}}$ હોય તો $k$ ની કિમત મેળવો.
જો $\left(1-3 x+10 x^2\right)^{\mathrm{n}}$ ના વિસ્તરણમાં તમામ સહગુણકોના સરવાળાને $\mathrm{A}$ વડે દર્શાવાય તથા $\left(1+x^2\right)^{\mathrm{n}}$ ના વિસ્તરણમાં તમામ સહગુણકોના સરવાળાને $B$ વડે દર્શાવાય, તો :
$\left( {\begin{array}{*{20}{c}}n\\0\end{array}} \right) + 2\,\left( {\begin{array}{*{20}{c}}n\\1\end{array}} \right) + {2^2}\left( {\begin{array}{*{20}{c}}n\\2\end{array}} \right) + ..... + {2^n}\left( {\begin{array}{*{20}{c}}n\\n\end{array}} \right)=$ . . .
${C_0} - {C_1} + {C_2} - {C_3} + ..... + {( - 1)^n}{C_n}$ = . . .
$(1+x)^{10}$ ના દ્વિપદી વિસ્તરણમાં $x^{10-r}$ નો સણગુણક જો $a_r$ હોય., તો $\sum \limits_{r=1}^{10} r^3\left(\frac{a_r}{a_{r-1}}\right)^2=...............$