$\left( \begin{array}{l}30\\0\end{array} \right)\,\left( \begin{array}{l}30\\10\end{array} \right) - \left( \begin{array}{l}30\\1\end{array} \right)\,\left( \begin{array}{l}30\\11\end{array} \right)$ + $\left( \begin{array}{l}30\\2\end{array} \right)\,\left( \begin{array}{l}30\\12\end{array} \right) + ....... + \left( \begin{array}{l}30\\20\end{array} \right)\,\left( \begin{array}{l}30\\30\end{array} \right) = .$ . ..

  • [IIT 2005]
  • A

    $^{60}{C_{20}}$

  • B

    $^{30}{C_{10}}$

  • C

    $^{60}{C_{30}}$

  • D

    $^{40}{C_{30}}$

Similar Questions

 $x^3 - 3x^2 - 9x + c$ ને $(x - a)^2 (x - b)$ પણ લખી શકાય તો $c$ ની કિમત મેળવો 

જો $[ x ]$ એ મહતમ પૃણાંક વિધેય દર્શાવે છે . જો  $n \in N ,\left(1-x+x^{3}\right)^{n}=\sum_{j=0}^{3 n} a_{j} x^{j}$, તો  $\sum_{j=0}^{\left[\frac{3 n}{2}\right]} a_{2 j}+4 \sum_{j=0}^{\left[\frac{3 n-1}{2}\right]} a_{2 j+1}$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

$^{10}{C_1}{ + ^{10}}{C_3}{ + ^{10}}{C_5}{ + ^{10}}{C_7}{ + ^{10}}{C_9} = $

 ધારો કે $\alpha=\sum_{r=0}^n\left(4 r^2+2 r+1\right)^n C_r$ અને $\beta=\left(\sum_{r=0}^n \frac{{ }^n C_r}{r+1}\right)+\frac{1}{n+1} \cdot$ જો $140 < \frac{2 \alpha}{\beta}<281$ તો $n$ નું મૂલ્ય .......... છે.

  • [JEE MAIN 2024]

${(1 + x)^{50}}$ ના વિસ્તરણમાં $x$ ની અયુગ્મ ઘાતાંકના સહગુણકનો સરવાળો મેળવો.