$(1+x)^{10}$ ના દ્વિપદી વિસ્તરણમાં $x^{10-r}$ નો સણગુણક જો $a_r$ હોય., તો $\sum \limits_{r=1}^{10} r^3\left(\frac{a_r}{a_{r-1}}\right)^2=...............$

  • [JEE MAIN 2023]
  • A

    $4895$

  • B

    $1210$

  • C

    $5445$

  • D

    $3025$

Similar Questions

${(1 + x)^5}$ ના સહગુણકનો સરવાળો મેળવો.

જો $a$ અને $d$ બે સંકર સંખ્યા હોય તો શ્રેણી $a{C_0} - (a + d){C_1} + (a + 2d){C_2} - ........$ ના $(n + 1)$ પદનો સરવાળો મેળવો.

જો ગુણાકાર $\left(1+x+x^{2}+\ldots+x^{2 n}\right)\left(1-x+x^{2}-x^{3}+\ldots+x^{2 n}\right)$ માં $x$ ની બધીજ યુગ્મ ઘાતાંકનો સરવાળો $61,$ હોય તો  $\mathrm{n}$ મેળવો.

  • [JEE MAIN 2020]

$\left( {\left( {\begin{array}{*{20}{c}}
{21}\\
1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
1
\end{array}} \right)} \right) + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
2
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
2
\end{array}} \right)} \right)$$ + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
3
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
3
\end{array}} \right)} \right) + \;.\;.\;.$$ + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
{10}
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
{10}
\end{array}} \right)} \right) = $

  • [JEE MAIN 2017]

${(x + a)^n}$ ના વિસ્તરણમાં , $A$ એ અયુગ્મ પદનો સરવાળો દર્શાવે છે અને $B$ એ યુગ્મ પદનો સરવાળો દર્શાવે છે તો . . . ..