${(1 + x - 3{x^2})^{2163}}$ વિસ્તરણમાં સહગુણકોનો સરવાળો મેળવો.

  • [IIT 1982]
  • A

    $0$

  • B

    $1$

  • C

    $ - 1$

  • D

    ${2^{2163}}$

Similar Questions

જો ${C_r}$ એ $^n{C_r}$ દર્શાવે છે તો , $\frac{{2(n/2)!(n/2)!}}{{n!}}[C_0^2 - 2C_1^2 + 3C_2^2 - ..... + {( - 1)^n}(n + 1)C_n^2]$ મેળવો. (કે જ્યાં $n$ એ યુગ્મ પુર્ણાક છે )

  • [IIT 1986]

${\left( {x + \sqrt {{x^3} - 1} } \right)^5} + {\left( {x - \sqrt {{x^3} - 1} } \right)^5},\left( {x > 1} \right)$ ના વિસ્તરણમાં એકી ઘાતવાળા તમામ પદોનાં સહગુણકોનો સરવાળો . . . . છે. 

  • [JEE MAIN 2018]

જો ${(\alpha {x^2} - 2x + 1)^{35}}$ ના વિસ્તરણમાં સહગુણકોનો સરવાળોએ ${(x - \alpha y)^{35}}$ ના વિસ્તરણમાં સહગુણકોનો સરવાળો બરાબર થાય છે , તો $\alpha $=

જો ${S_n} = \sum\limits_{r = 0}^n {\frac{1}{{^n{C_r}}}} $ અને ${t_n} = \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} $, તો $\frac{{{t_n}}}{{{S_n}}}$ = . . .

  • [AIEEE 2004]

જો ${\left( {1 + x} \right)^{10}} = \sum\limits_{r = 0}^{10} {{C_r}{x^r}} $ ,${\left( {1 + x} \right)^7} = \sum\limits_{r = 0}^7 {{d_r}{x^r}} $ અને $P = \sum\limits_{r = 0}^5 {{C_{2r}}} $ તથા $Q = \sum\limits_{r = 0}^3 {{d_{2r + 1}}} $ ,હોય તો $\frac{P}{{2Q}}$ ની કિમત મેળવો