$(1+ x )^{ n +2}$ ના દ્રીપદી વિસ્તરણમાં $1:3:5$ ગુણોત્તરમાં હોય તેવા ત્રણ ક્રમિક પદોના સહગુણકોનો સરવાળો $........$ થાય.
$25$
$63$
$41$
$92$
જો $n$ એ $1$ કરતાં મોટો પૂર્ણાક હોય , તો $a{ - ^n}{C_1}(a - 1){ + ^n}{C_2}(a - 2) + .... + {( - 1)^n}(a - n) = $
જો ${({\alpha ^2}{x^2} - 2\alpha {\rm{ }}x + 1)^{51}}$ ના સહગુણકનો સરવાળો શૂન્ય હોય તો $\alpha $ મેળવો.
જો $\sum\limits_{K = 1}^{12} {12K{.^{12}}{C_K}{.^{11}}{C_{K - 1}}} $ ની કિમત $\frac{{12 \times 21 \times 19 \times 17 \times ........ \times 3}}{{11!}} \times {2^{12}} \times p$ હોય તો $p$ ની કિમત મેળવો
જો ${s_1} = \mathop \sum \limits_{j = 1}^{10} j\left( {j - 1} \right)\left( {\begin{array}{*{20}{c}}{10}\\j\end{array}} \right)\;,$$\;{s_2} = \mathop \sum \limits_{j = 1}^{10} j\;\left( {\begin{array}{*{20}{c}}{10}\\j\end{array}} \right)\;and,$${s_3} = \mathop \sum \limits_{j = 1}^{10} {j^2}\left( {\begin{array}{*{20}{c}}{10}\\j\end{array}} \right)\;,\;$
વિધાન $1$:${s_3} = 55 \times {2^9}$
વિધાન $2$: ${s_1} = 90 \times {2^8}\;$અને ${s_2} = 10 \times {2^8}$
$\left(1+x+x^{2}+x^{3}\right)^{6}$ ના વિસ્તરણમાં $x^{4}$ નો સહગુણક ........ થાય