The sum of the coefficients of the first three terms in the expansion of $\left(x-\frac{3}{x^{2}}\right)^{m}, x \neq 0, m$ being a natural number, is $559 .$ Find the term of the expansion containing $x^{3}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The coefficients of the first three terms of ${\left( {x - \frac{3}{{{x^2}}}} \right)^m}$ are $^m{C_0},( - 3){\,^m}{C_1}$ and $\,9{\,^m}{C_2}$. Therefore, by the given condition, we have

$^m{C_0} - 3{\,^m}{C_1} + 9{\,^m}{C_2} = 559,$   i.e.,  $1 - 3m + \frac{{9m(m - 1)}}{2} = 559$

which gives $m=12$ ( $m$ being a natural number).

Now ${T_{r + 1}} = {\,^{12}}{C_r}{x^{12 - r}}{\left( { - \frac{3}{{{x^2}}}} \right)^r} = {\,^{12}}{C_r}{( - 3)^r} \cdot {x^{12 - 3r}}$

Since we need the term containing $x^{3}$, so put $12-3 r=3$ i.e., $r=3$

Thus, the required term is ${\,^{12}}{C_3}{( - 3)^3}{x^3},$ i.e., $-5940 x^{3}$

Similar Questions

If $\frac{{{T_2}}}{{{T_3}}}$ in the expansion of ${(a + b)^n}$ and $\frac{{{T_3}}}{{{T_4}}}$ in the expansion of ${(a + b)^{n + 3}}$ are equal, then $n=$

The least value of $n$ for which the number of integral terms in the Binomial expansion of $(\sqrt[3]{7}+\sqrt[12]{11})^{ n }$ is $183$ , is :

  • [JEE MAIN 2025]

In the expansion of ${\left( {\frac{a}{x} + bx} \right)^{12}}$,the coefficient of $x^{-10}$ will be

If the co-efficient of $x^9$ in $\left(\alpha x^3+\frac{1}{\beta x}\right)^{11}$ and the co-efficient of $x^{-9}$ in $\left(\alpha x-\frac{1}{\beta x^3}\right)^{11}$ are equal, then $(\alpha \beta)^2$ is equal to $.............$.

  • [JEE MAIN 2023]

If the third term in the binomial expansion of ${\left( {1 + {x^{{{\log }_2}\,x}}} \right)^5}$ equals $2560$, then a possible value of $x$ is

  • [JEE MAIN 2019]