The sum of the coefficients of the first three terms in the expansion of $\left(x-\frac{3}{x^{2}}\right)^{m}, x \neq 0, m$ being a natural number, is $559 .$ Find the term of the expansion containing $x^{3}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The coefficients of the first three terms of ${\left( {x - \frac{3}{{{x^2}}}} \right)^m}$ are $^m{C_0},( - 3){\,^m}{C_1}$ and $\,9{\,^m}{C_2}$. Therefore, by the given condition, we have

$^m{C_0} - 3{\,^m}{C_1} + 9{\,^m}{C_2} = 559,$   i.e.,  $1 - 3m + \frac{{9m(m - 1)}}{2} = 559$

which gives $m=12$ ( $m$ being a natural number).

Now ${T_{r + 1}} = {\,^{12}}{C_r}{x^{12 - r}}{\left( { - \frac{3}{{{x^2}}}} \right)^r} = {\,^{12}}{C_r}{( - 3)^r} \cdot {x^{12 - 3r}}$

Since we need the term containing $x^{3}$, so put $12-3 r=3$ i.e., $r=3$

Thus, the required term is ${\,^{12}}{C_3}{( - 3)^3}{x^3},$ i.e., $-5940 x^{3}$

Similar Questions

If the coefficents of ${x^3}$ and ${x^4}$ in the expansion of  $\left( {1 + ax + b{x^2}} \right){\left( {1 - 2x} \right)^{18}}$ in powers of $x$ are both zero, then $ (a,b) $ is equal to 

  • [JEE MAIN 2014]

The coefficient of $x^8$ in the expansion of $(1 -x^4)^4 (1 + x)^5$ is :-

In the expansion of ${\left( {\frac{{x\,\, + \,\,1}}{{{x^{\frac{2}{3}}}\,\, - \,\,{x^{\frac{1}{3}}}\,\, + \,\,1}}\,\, - \,\,\frac{{x\,\, - \,\,1}}{{x\,\, - \,\,{x^{\frac{1}{2}}}}}} \right)^{10}}$, the term which does not contain $x$ is :

The coefficient of ${t^{24}}$ in the expansion of ${(1 + {t^2})^{12}}(1 + {t^{12}})\,(1 + {t^{24}})$ is

  • [IIT 2003]

Let the coefficients of three consecutive terms in the binomial expansion of $(1+2 x)^{ n }$ be in the ratio $2: 5: 8$. Then the coefficient of the term, which is in the middle of these three terms, is $...........$.

  • [JEE MAIN 2023]