श्रेणियों $3+7+11+15+\ldots$ तथा $1+6+11+16+\ldots \ldots$, के बीच उभयनिष्ठ प्रथम $20$ पदों का योग है

  • [JEE MAIN 2014]
  • A

    $4000$

  • B

    $4020$

  • C

    $4200$

  • D

    $4220$

Similar Questions

अनुक्रम के पाँच पद लिखिए तथा संगत श्रेणी ज्ञात कीजिए

$a_{1}=3, a_{n}=3 a_{n-1}+2$ सभी $n>1$ के लिए

यदि $a _1, a _2, a _3 \ldots$ व $b _1, b _2, b _3 \ldots$ समान्तर श्रेणी में हैं तथा $a _1=2, a _{10}=3, a _1 b _1=1= a _{10} b _{10}$ है, तो $a _4 b _4$ बराबर है

  • [JEE MAIN 2022]

माना $a_{1}, a_{2}, a_{3}, \ldots \ldots, a_{n}, \ldots .$ एक समांतर श्रेढ़ी में हैं। यदि $a_{3}+a_{7}+a_{11}+a_{15}=72$ है, तो उसके प्रथम $17$ पदों का योग बराबर है

  • [JEE MAIN 2016]

यदि ${ }^{ n } C _{4},{ }^{ n } C _{5}$ तथा ${ }^{ n } C _{6}$ समान्तर श्रेणी में हो, तो $n$ का मान हो सकता है 

  • [JEE MAIN 2019]

माना $\mathrm{a}_1, \mathrm{a}_2, \ldots \ldots, \mathrm{a}_{\mathrm{n}}$  $A.P.$ में हैं। यदि $\mathrm{a}_5=2 \mathrm{a}_7$ तथा $\mathrm{a}_{11}=18$ है, तो $12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots . \cdot \frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)$ बराबर है_________.

  • [JEE MAIN 2023]