एक समान्तर श्रेणी के प्रथम चार पदों का योग $56$ है। अन्तिम चार पदों का योग $112$ है। यदि इसका प्रथम पद $11$ हो, तो पदों की संख्या है
$10$
$11$
$12$
None of these
यदि ${a^2},\;{b^2},\;{c^2}$ समान्तर श्रेणी में हों, तो ${(b + c)^{ - 1}},\;{(c + a)^{ - 1}}$ व ${(a + b)^{ - 1}}$ होंगे
यदि ${a^2},\,{b^2},\,{c^2}$ समान्तर श्रेणी में हैं, तो $\frac{a}{{b + c}},\,\frac{b}{{c + a}},\,\frac{c}{{a + b}}$ होंगे
माना कि किसी समांतर श्रेणी के $n, 2 n,$ तथा $3 n$ पदों का योगफल क्रमशः $S _{1}, S _{2}$ तथा $S _{3}$ है तो दिखाइए कि $S _{3}=3\left( S _{2}- S _{1}\right)$
उस समांतर श्रेणी के $n$ पदों का योगफल ज्ञात कीजिए, जिसका $k$ वाँ पद $5 k +1$ है।
किसी समूह की $50$ सँख्याओं का समान्तर माध्य $38$ है। यदि समूह की दो संख्यायें $55$ तथा $45$ हटा दी जायें, तब शेष संख्याओं के समूह का समान्तर माध्य है