दी गई परिभाषाओं के आधार पर निम्नलिखित प्रत्येक अनुक्रम के प्रथम तीन पद बताइए

$a_{n}=2 n+5$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Here $a_{n}=2 n+5$

Substituting $ n =1,2,3, $ we get 

$a_{1} =2(1)+5=7, a_{2}=9, a_{3}=11$

Therefore, the required terms are $7,9$ and $11 .$

Similar Questions

यदि समान्तर श्रेणी के $n$ पदों का योग $3{n^2} + 5n$ व ${T_m} = 164$ हो, तो  $m = $

समांतर श्रेढ़ी $3,8,13, \ldots . .373$ के उन सभी पदों, जो $3$ से विभाज्य नहीं है, का योग बराबर है________

  • [JEE MAIN 2023]

माना $a , b$ दो शून्येत्तर वास्तविक संख्याएँ हैं। एक समीकरण $x^2-8 a x+2 a=0$ के मूल $p$ तथा $r$ हैं और समीकरण $x ^2+12 bx +6 b =0$, के मूल $q$ तथा $s$ हैं, इस प्रकार कि $\frac{1}{ p }, \frac{1}{ q }, \frac{1}{ r }, \frac{1}{ s }$ A.P. में हैं,तो $a^{-1}-b^{-1}$ बराबर है $................$

  • [JEE MAIN 2022]

$m$ संख्याओं को $1$ तथा $31$ के रखने पर प्राप्त अनुक्रम एक समांतर श्रेणी है और $7$ वीं एव $(m-1)$ वीं संख्याओं का अनुपात $5: 9$ है। तो $m$ का मान ज्ञात कीजिए।

चार संख्यायें समान्तर श्रेणी में हैं। यदि प्रथम तथा अंतिम पदों का योग $8$ है तथा दोनों मध्य पदों का गुणनफल $15$ है, तो श्रेणी की न्यूनतम संख्या होगी