$\left( {\begin{array}{*{20}{c}}{20}\\0\end{array}} \right) - \left( {\begin{array}{*{20}{c}}{20}\\1\end{array}} \right)$$+$$\left( {\begin{array}{*{20}{c}}{20}\\2\end{array}} \right) - \left( {\begin{array}{*{20}{c}}{20}\\3\end{array}} \right)$$+…..-……+$$\left( {\begin{array}{*{20}{c}}{20}\\{10}\end{array}} \right)$ નો સરવાળો.
$0$
$\;\left( {\begin{array}{*{20}{c}}{20}\\{10}\end{array}} \right)$
-$\;\left( {\begin{array}{*{20}{c}}{20}\\{10}\end{array}} \right)$
$\frac{1}{2}\left( {\begin{array}{*{20}{c}}{20}\\{10}\end{array}} \right)$
જો ${S_n} = \sum\limits_{r = 0}^n {\frac{1}{{^n{C_r}}}} $ અને ${t_n} = \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} $, તો $\frac{{{t_n}}}{{{S_n}}}$ = . . .
જો ${(1 + x)^{2016}} + x{(1 + x)^{2015}} + {x^2}{(1 + x)^{2014}} + ....{x^{2016}} = \sum\limits_{i = 0}^{2016} {{a_i\,}{\,x^i}} $ જ્યાં $x\, \in \,R\,,\,x\, \ne \, - 1$ તો $a_{17}$ ની કિમત મેળવો.
${(1 + x)^{15}}$ ના વિસ્તરણમાં છેલ્લા આઠ પદનો સરવાળો મેળવો.
શ્રેણી $^{100}{C_1}\,{2^8}.\,{\left( {1\, - \,x} \right)^{99}}\, + {\,^{100}}{C_2}\,{2^7}.\,{\left( {1\, - \,x} \right)^{98}}\, + {\,^{100}}{C_3}\,{2^6}.\,{\left( {1\, - \,x} \right)^{97}}\, + \,....\, + {\,^{100}}{C_9}\,{\left( {1\, - \,x} \right)^{91}}$ માં $x^{91}$ નો સહગુનક મેળવો
$\frac{{{C_0}}}{1} + \frac{{{C_1}}}{2} + \frac{{{C_2}}}{3} + .... + \frac{{{C_n}}}{{n + 1}} = $