श्रेणी $\frac{{{C_0}}}{2} - \frac{{{C_1}}}{3} + \frac{{{C_2}}}{4} - \frac{{{C_3}}}{5} + $.....के $(n + 1)$ पदों का योग है
$\frac{1}{{n + 1}}$
$\frac{1}{{n + 2}}$
$\frac{1}{{n(n + 1)}}$
इनमें से कोई नहीं
${(1 + x + {x^2} + {x^3})^5}$ के विस्तार में $x$ की सम घातों के गुणांकों का योगफल है
यदि गुणनफल $\left(1+ x + x ^{2}+\ldots+ x ^{2 n }\right)\left(1- x + x ^{2}\right.$ $\left.- x ^{3}+\ldots+ x ^{2 n }\right)$ में, $x$ के सभी सम-घातों वाले गुणाकों का योगफल $61$ है, तो $n$ बराबर ....... है |
मान $[ x ]$ महत्तम पूर्णांक $\leq x$ है। यदि $n \in N$ के लिए $,\left(1-x+x^{3}\right)^{n}=\sum_{j=0}^{3 n} a_{j} x^{j}$ है, तो $\sum_{j=0}^{\left[\frac{3 n}{2}\right]} a_{2 j}+4 \sum_{j=0}^{\left[\frac{3 n-1}{2}\right]} a_{2 j+1}$ बराबर है
${C_0} - {C_1} + {C_2} - {C_3} + ..... + {( - 1)^n}{C_n}$ बराबर होगा
यदि $\frac{{ }^{11} \mathrm{C}_1}{2}+\frac{{ }^{11} \mathrm{C}_2}{3}+\ldots . .+\frac{{ }^{11} \mathrm{C}_9}{10}=\frac{\mathrm{n}}{\mathrm{m}}$ है तथा $\operatorname{gcd}(\mathrm{n}, \mathrm{m})=1$ है, तो $\mathrm{n}+\mathrm{m}$ बराबर है ............