श्रेणी $\frac{{{C_0}}}{2} - \frac{{{C_1}}}{3} + \frac{{{C_2}}}{4} - \frac{{{C_3}}}{5} + $.....के $(n + 1)$ पदों का योग है
$\frac{1}{{n + 1}}$
$\frac{1}{{n + 2}}$
$\frac{1}{{n(n + 1)}}$
इनमें से कोई नहीं
यदि ${S_n} = \sum\limits_{r = 0}^n {\frac{1}{{^n{C_r}}}} $ और ${t_n} = \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} $, तो $\frac{{{t_n}}}{{{S_n}}}$=
यदि $\left(1-\frac{2}{x}+\frac{4}{x^{2}}\right)^{n}, x \neq 0$ के प्रसार में पदों की संख्या $28$ है, तो इस प्रसार में आने वाले सभी पदों के गुणांकों का योग है:
यदि $b , a$ से बहुत छोटा है, जिनके लिए निम्न सर्वसमिका
$\frac{1}{a-b}+\frac{1}{a-2 b}+\frac{1}{a-3 b}+\ldots .+\frac{1}{a-n b}=\alpha n+\beta n^{2}+\gamma n^{3}$ में, $\frac{ b }{ a }$ की क्यूब और ऊँची घातों की उपेक्षा की जा सकती है, तो $\gamma$ बराबर है
माना $\left(1+x+2 x^{2}\right)^{20}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{40} x^{40}$ है। तो $a_{1}+a_{3}+a_{5}+\ldots+a_{37}$ बराबर है
यदि $( x + y )^{ n }$ के प्रसार में गुणांकों का योगफल $4096$ है, तब प्रसार में महत्तम गुणांक है ....... |