वृत्त ${x^2} + {y^2} = 4$ के किसी बिन्दु $P$ पर स्पर्श रेखा अक्षों को $A$ व $B$ पर मिलती है, तो
$AB$ की लम्बाई नियत है
$PA$ व $PB$ हमेशा बराबर होते हैं
$AB$ के मध्य बिन्दु का बिन्दुपथ ${x^2} + {y^2} = {x^2}{y^2}$ है
इनमें से कोई नहीं
माना बिंदु $P (0, h )$ से वृत्त $x^{2}+y^{2}=16$ पर खींची गई स्पर्श रेखाएँ $x$-अक्ष को बिंदुओं $A$ तथा $B$ पर मिलती हैं। यदि $\triangle APB$ का क्षेत्रफल न्यूनतम है, तो $h$ बराबर है
रेखा $lx + my + n = 0$, वृत्त ${x^2} + {y^2} + 2gx + 2fy + c = 0$ का अभिलम्ब है, यदि
माना वृत्त $C _1: x^2+y^2=2$ के बिन्दु $M (-1,1)$ पर खीची गई स्पर्श रेखा, वृत्त $C _2:( x -3)^2+(y-2)^2=5$ को दो विभिन्न बिन्दुओं $A$ तथा $B$ पर प्रतिच्छेद करती हे। यदि वृत्त $C _2$ के बिन्दु $A$ तथा $B$ पर खीची गई स्पर्श रेखा $N$ पर काटती है, तो त्रिभुज $ANB$ का क्षेत्रफल है :
मानाकि वृत्त $C$ सरल रेखा $L _1: 4 x -3 y + K _1=0$ तथा $L _2: 4 x -3 y + K _2=0, K _1, K _2 \in R$ को स्पर्श करता टै। यदि एक सरल रेखा वृत्त $C$ के केन्द्र से गुजरती है $L _1$ को $(-1,2)$ तथा $L _2$ को $(3,-6)$ पर प्रतिच्छेद करती है तो वृत्त $C$ का समीकऱण होगा
रेखा $y = 2x + c$ को वृत्त ${x^2} + {y^2} = 16$ की स्पर्श रेखा होने के लिए $c$ का मान है