${\left( {{x^2} - \frac{1}{{3x}}} \right)^9}$ के प्रसार में $x$ रहित पद होगा
$\frac{{28}}{{81}}$
$\frac{{28}}{{243}}$
$ - \frac{{28}}{{243}}$
$ - \frac{{28}}{{81}}$
${(1 + x)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ के प्रसार में $\frac{1}{x}$ का गुणांक है
दिखाइए कि $(1+x)^{2 n}$ के प्रसार में मध्य पद $\frac{1.3 .5 \ldots(2 n-1)}{n !} 2 n\, x^{n},$ है, जहाँ $n$ एक धन पूर्णांक है।
यदि $\left(3^{1 / 2}+5^{1 / 8}\right)^{ n }$ के प्रसार में पूर्णाकीय पदों की संख्या मात्र $33$ है, तो $n$ का न्यूनतम मान है
निम्नलिखित प्रसारों में मध्य पद ज्ञात कीजिए
$\left(3-\frac{x^{3}}{6}\right)^{7}$
माना $[\mathrm{t}]$ महत्तम पूर्णांक $\leq \mathrm{t}$ है। यदि $\left(3 \mathrm{x}^2-\frac{1}{2 \mathrm{x}^5}\right)^7$ के प्रसार में अचर पद $\alpha$ है, तो $[\alpha]$ बराबर है_______