The coefficient of ${x^{53}}$ in the following expansion $\sum\limits_{m = 0}^{100} {{\,^{100}}{C_m}{{(x - 3)}^{100 - m}}} {.2^m}$is
$^{100}{C_{47}}$
$^{100}{C_{53}}$
${ - ^{100}}{C_{53}}$
${ - ^{100}}{C_{100}}$
Find the value of $\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}$
The term independent of $x$ in the expansion of ${(1 + x)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ is
Let the ratio of the fifth term from the beginning to the fifth term from the end in the binomial expansion of $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{n}$, in the increasing powers of $\frac{1}{\sqrt[4]{3}}$ be $\sqrt[4]{6}: 1$. If the sixth term from the beginning is $\frac{\alpha}{\sqrt[4]{3}}$, then $\alpha$ is equal to$.......$
Write the general term in the expansion of $\left(x^{2}-y\right)^{6}$
Let $\alpha>0, \beta>0$ be such that $\alpha^{3}+\beta^{2}=4 .$ If the maximum value of the term independent of $x$ in the binomial expansion of $\left(\alpha x^{\frac{1}{9}}+\beta x^{-\frac{1}{6}}\right)^{10}$ is $10 k$ then $\mathrm{k}$ is equal to