The coefficient of ${x^{53}}$ in the following expansion $\sum\limits_{m = 0}^{100} {{\,^{100}}{C_m}{{(x - 3)}^{100 - m}}} {.2^m}$is
$^{100}{C_{47}}$
$^{100}{C_{53}}$
${ - ^{100}}{C_{53}}$
${ - ^{100}}{C_{100}}$
For $\mathrm{r}=0,1, \ldots, 10$, let $\mathrm{A}_{\mathrm{r}}, \mathrm{B}_{\mathrm{r}}$ and $\mathrm{C}_{\mathrm{r}}$ denote, respectively, the coefficient of $\mathrm{x}^{\mathrm{r}}$ in the expansions of $(1+\mathrm{x})^{10}$, $(1+\mathrm{x})^{20}$ and $(1+\mathrm{x})^{30}$. Then $\sum_{r=1}^{10} A_r\left(B_{10} B_r-C_{10} A_r\right)$ is equal to
The term independent of $x$ in ${\left( {\sqrt x - \frac{2}{x}} \right)^{18}}$ is
Let ${\left( {x + 10} \right)^{50}} + {\left( {x - 10} \right)^{50}} = {a_0} + {a_1}x + {a_2}{x^2} + .... + {a_{50}}{x^{50}}$ , for $x \in R$; then $\frac{{{a_2}}}{{{a_0}}}$ is equal to
If the coefficients of the three consecutive terms in the expansion of $(1+ x )^{ n }$ are in the ratio $1: 5: 20$, then the coefficient of the fourth term is $............$.
In the expansion of ${(1 + 3x + 2{x^2})^6}$ the coefficient of ${x^{11}}$ is