7.Binomial Theorem
easy

${\left( {{x^2} - \frac{1}{{3x}}} \right)^9}$ ના વિસ્તરણમાં અચળપદ મેળવો.

A

$\frac{{28}}{{81}}$

B

$\frac{{28}}{{243}}$

C

$ - \frac{{28}}{{243}}$

D

$ - \frac{{28}}{{81}}$

Solution

(b) In ${\left( {{x^2} – \frac{1}{{3x}}} \right)^9},$

${T_{r + 1}} = {\,^9}{C_r}{({x^2})^{9 – r}}{\left( { – \frac{1}{{3x}}} \right)^r}$

$ = {\,^9}{C_r}{x^{18 – 2r}}\frac{{{{( – 1)}^r}}}{{{3^r}}}{x^{ – r}}$

It is independent of $x$.

$\therefore  18 – 3r = 0 \Rightarrow r = 6$

 $\therefore {T_7} = {\,^9}{C_6}{x^{18 – 12}}\frac{{{{( – 1)}^6}}}{{{3^6}}}{x^{ – 6}} = {\,^9}{C_6}\frac{{{{( – 1)}^6}}}{{36}} = \frac{{28}}{{243}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.