9-1.Fluid Mechanics
easy

कमरे के ताप पर किसी तेल की टंकी में गिर रही $5\,mm$ त्रिज्या वाली किसी ताँबे की गेंद का सीमांत वेग $10\, cm\,s ^{-1}$ है। यदि कमरे के ताप पर तेल की श्यानता $0.9\,kg\,m ^{-1}\,s ^{-1}$ है, तो. आरोपित श्यान बल है :

A

$8.48 \times 10^{-3}\,N$

B

$8.48 \times 10^{-5}\,N$

C

$4.23 \times 10^{-3}\,N$

D

$4.23 \times 10^{-6}\,N$

(NEET-2022)

Solution

$F\,=6 \pi \eta rv$

$\quad =6 \times 3.14 \times 0.9 \times 5 \times 10^{-3} \times 10 \times 10^{-2}$

$\quad=847.8 \times 10^{-5}\,N$

$\quad=8.48 \times 10^{-3}\,N$

Standard 11
Physics

Similar Questions

सांकेतिक चित्र में दर्शाए अनुसार, दो पात्रों में पोटेशियम परमेंगनेट $\left( KMnO _4\right)$ के जल विलयन (तापमान $T$ पर) निहित है, जिनमें प्रति इकाई आयतन अणुओं की भिन्न-भिन्न सांद्रता $n _1$ व $n _2\left( n _1> n _2\right)$ है जबकि $\Delta n =\left( n _1- n _2\right) \ll n _1$ है। जब इन्हें कम लम्बाई $\ell$ व अनुप्रस्थ काट क्षेत्रफल $S$ की नलिका द्वारा संयोजित किया जाता है, $KMnO _4$ नलिका से होते हुए बाँये से दाँये पात्र में विसरित होना प्रारम्भ करता है। माना अणुओं का संग्रह तनु आदर्श गैसों की भाँति व्यवहार करता है तथा दोनों पात्रों में इनके आंशिक दाब में अंतर के कारण विसरण होता है। अणुओं की चाल $v$ को प्रत्येक अणु पर श्यान बल $-\beta v$ द्वारा सीमित किया जाता है, जहाँ $\beta$ एक नियतांक है। $(\Delta n )^2$ कोटी के सभी पदों को नगण्य मानते हुए, निम्नलिखित में से कौनसा/कौनसे सही है/हैं? ( $k _{ B }$ बोल्ट्जमान नियतांक है)

$(A)$ नलिका के पार गति करने वाले अणुओं के कारण बल $\Delta nk _{ B } TS$ है।

$(B)$ बल संतुलन का अभिप्राय है $n _1 \beta v \ell=\Delta nk _{ B } T$

$(C)$ प्रति सेकण्ड नलिका के पार जाने वाले अणुओं की कुल संख्या $\left(\frac{\Delta n}{\ell}\right)\left(\frac{k_B T}{\beta}\right) S$ है

$(D)$ नलिका से स्थानान्तरित होने वाले अणुओं की दर समय के साथ परिवर्तित नहीं होती है।

normal
(IIT-2020)

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.