6.System of Particles and Rotational Motion
hard

The time dependence of the position of a particle of mass $m = 2$ is given by $\vec r\,(t)\, = \,2t\,\hat i\, - 3{t^2}\hat j$ Its angular momentum with respect to the origin at time $t = 2$ is

A

$-48\,\hat k$

B

$48\,(\hat i\, + \,\hat j)$

C

$36\,\hat k$

D

$ - \,34\,(\hat k\, - \,\hat i)$

(JEE MAIN-2019)

Solution

$\overrightarrow v  = 2\hat i – 6 + \hat j$

$At\,t = 2$

$\overrightarrow v  = 2\hat i – 12\hat j$

$\overrightarrow p  = m\overrightarrow v  = 4i – 24\hat j$

$At\,t = 2$

$\overrightarrow r  = 4\hat i – 12\hat j$

$\overrightarrow L  = \overrightarrow r  \times \overrightarrow p  = \left| \begin{array}{l}
\hat i\,\,\,\,\,\,\,\,\,\,\hat j\,\,\,\,\,\,\,\,\,\,\,\hat k\\
4\,\,\,\,\,\, – 12\,\,\,\,\,\,\,\,\,0\\
4\,\,\,\,\,\, – 24\,\,\,\,\,\,\,\,\,0
\end{array} \right|$

$ = \left\{ {4\left( { – 24} \right) + 4 \times 12} \right\}\hat k$

$ = \left( { – 96 + 48} \right)\hat k$

$ = \left(  –  \right)48\,\hat k$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.