दो वृत्त, जो $(0,a)$ व $(0, - a)$ से गुजरते हैं एवं रेखा $y = mx + c$ को स्पर्श करते हैं, एक-दूसरे को समकोण पर काटेंगे यदि
${a^2} = {c^2}(2m + 1)$
${a^2} = {c^2}(2 + {m^2})$
${c^2} = {a^2}(2 + {m^2})$
${c^2} = {a^2}(2m + 1)$
यदि $OA$ तथा $OB$ मूल बिन्दु $O$ से वृत्त ${x^2} + {y^2} - 6x - 8y + 21 = 0$ पर खींची गयी रेखाएँ हों तो $AB =$
यदि एक रेखा $y = mx + c$ वृत्त $( x -3)^{2}+ y ^{2}=1$ की एक स्पर्श रेखा है तथा यह एक रेखा $L_{1}$ पर लम्ब है, जहाँ $L_{1}$ वृत्त $x ^{2}+ y ^{2}=1$ के बिन्दु $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ पर स्पर्श रेखा है, तो
वृत्त ${x^2} + {y^2} + 4x - 4y + 4 = 0$ पर उस रेखा का समीकरण जो धनात्मक अक्षों से बराबर अन्त:खण्ड काटती है, होगा
यदि वृत्त ${x^2} + {y^2} + 2gx + 2fy = 0$ के द्वारा अक्षों से काटी गयी जीवाओं की लम्बाइयाँ क्रमश: $10$ तथा $24$ हों, तो वृत्त की त्रिज्या है
बिन्दु $(0, 1)$ से वृत्त ${x^2} + {y^2} - 2x + 4y = 0$ पर खींची गयी स्पर्श रेखाओं के समीकरण हैं