$\sum_{r=1}^{15} r^{2}\left(\frac{{ }^{15} C_{r}}{{ }^{15} C_{r-1}}\right)$ का मान है
$1240$
$560$
$1085$
$680$
$1$ से लेकर $30$ तक की संख्याओं में से तीन संख्यायें कितने प्रकार से चुनी जा सकती हैं जबकि तीनों संख्यायें सम न हों
$52$ ताशों की एक गड्डी से $4$ पत्तों को चुनने के तरीकों की संख्या क्या है ? इन तरीकों में से कितनों में से कितनों में
तस्वीरें हैं ?
$\sum \limits_{ k =0}^6{ }^{51- k } C _3$ बराबर है -
यदि सभी छः अंकों की संख्या $\mathrm{x}_1 \mathrm{x}_2 \mathrm{x}_3 \mathrm{x}_4 \mathrm{x}_5 \mathrm{x}_6$ के साथ $0<\mathrm{x}_1 < \mathrm{x}_2 < \mathrm{x}_3 < \mathrm{x}_4 < \mathrm{x}_5 < \mathrm{x}_6$ को बढ़ते क्रम में व्यवस्थित किया जाता है, तो $72$ वीं संख्या में अंकों का योगफल है______________.
${ }^{n-1} C_r=\left(k^2-8\right){ }^n C_{r+1}$ है यदि और केवल यदि :