$INVOLUTE$ शब्द के अक्षरों से, अर्थपूर्ण या अर्थहीन प्रत्येक $3$ स्वरों तथा $2$ व्यंजनों वाले, कितने शब्दों की रचना की जा सकती है ?
In the word $INVOLUTE$, there are $4$ vowels, namely, $I,O,E,U$ and $4$ consonants, namely, $N , V , L$ and $T.$
The number of ways of selecting $3$ vowels out of $4=\,^{4} C _{3}=4$
The number of ways of selecting $2$ consonants out of $4=\,^{4} C _{2}=6$
Therefore, the number of combinations of $3$ vowels and $2$ consonants is $4 \times 6=24$
Now, each of these $24$ combinations has $5$ letters which can be arranged among themselves in $5 !$ ways. Therefore, the required number of different words is $24 \times 5 !=2880$
$17$ खिलाड़ियों में से, जिनमें केवल $5$ खिलाड़ी गेंदबाज़ी कर सकते हैं, एक क्रिकेट टीम के $11$ खिलाड़ियों का चयन कितने प्रकार से किया जा सकता है, यदि प्रत्येक टीम में तथ्यत: $4$ गेंदबाज़ हैं ?
$\sum\limits_{r = 0}^{n - 1} {\frac{{^n{C_r}}}{{^n{C_r} + {\,^n}{C_{r + 1}}}}} $ का मान है
${}^{50}{C_4} + \sum\limits_{r = 1}^6 {^{56 - r}{C_3}} $ का मान है
$52$ पत्तों की एक गड्डी में से $5$ पत्तों के संचय की संख्या निर्धारित कीजिए, यदि $5$ पत्तों के प्रत्येक चयन (संचय) में तथ्यतः एक बादशाह है
एक विद्यार्थी को किसी परीक्षा में $13$ में से $10$ प्रश्नों का उत्तर इस प्रकार देना है कि वह प्रथम पांच प्रश्नों में से कम से कम $4$ प्रश्न का चुनाव कर सकता है, तो वह कुल कितने प्रकार से प्रश्नों का उत्तर दे सकता है