The value of $\left| {\begin{array}{*{20}{c}}
1&x&y\\
2&{\sin x + 2x}&{\sin y + 2y}\\
3&{\cos x + 3x}&{\cos y + 3y}
\end{array}} \right|$ is
$cos(x + y)$
$cos(xy)$
$sin(x + y)$
$sin(x - y)$
Let $D _{ k }=\left|\begin{array}{ccc}1 & 2 k & 2 k -1 \\ n & n ^2+ n +2 & n ^2 \\ n & n ^2+ n & n ^2+ n +2\end{array}\right|$. If $\sum \limits_{ k =1}^n$ $D _{ k }=96$, then $n$ is equal to
The value of $'a'$ for which the system of equation $a^3x + (a + 1)^3y + (a + 2)^3 z = 0$ ; $ax + (a + 1)y + (a + 2)z = 0$ ; $x + y + z = 0$ has a non-zero solution is :-
If $\left| {\,\begin{array}{*{20}{c}}{ - {a^2}}&{ab}&{ac}\\{ab}&{ - {b^2}}&{bc}\\{ac}&{bc}&{ - {c^2}}\end{array}\,} \right| = K{a^2}{b^2}{c^2},$ then $K = $
For how many diff erent values of $a$ does the following system have at least two distinct solutions?
$a x+y=0$
$x+(a+10) y=0$
If the system of equations, $x + 2y -3z = 1, (k + 3) z = 3, (2k + 1)x + z = 0$ is inconsistent, then the value of $k$ is :-