$\cos ^{3}\left(\frac{\pi}{8}\right) \cdot \cos \left(\frac{3 \pi}{8}\right)+\sin ^{3}\left(\frac{\pi}{8}\right) \cdot \sin \left(\frac{3 \pi}{8}\right) \text { का मान }$ है
$\frac{1}{4}$
$\frac{1}{\sqrt{2}}$
$\frac{1}{2\sqrt{2}}$
$\frac{1}{2}$
$\sin {163^o}\cos {347^o} + \sin {73^o}\sin {167^o} = $
$\cos \frac{\pi }{5}\cos \frac{{2\pi }}{5}\cos \frac{{4\pi }}{5}\cos \frac{{8\pi }}{5} = $
$\frac{{\sqrt {1 + \sin x} + \sqrt {1 - \sin x} }}{{\sqrt {1 + \sin x} - \sqrt {1 - \sin x} }} , \,\,($ जब $x \, \in $ द्वितीय चतुर्थांष $) =$
$\sqrt {2 + \sqrt {2 + 2\cos 4\theta } } = $
यदि $2\tan A = 3\tan B,$ तब $\frac{{\sin 2B}}{{5 - \cos 2B}}$ का मान होगा