दी गयी श्रेणी का मान होगा $\sum \limits_{n=0}^{1947} \frac{1}{2^n+\sqrt{2^{1947}}}$
$\frac{487}{\sqrt{2^{1945}}}$
$\frac{1946}{\sqrt{2^{1947}}}$
$\frac{1947}{\sqrt{2^{1947}}}$
$\frac{1948}{\sqrt{2^{1947}}}$
माना $f(x)$ एक द्विघाती बहुपद है जिसका मुख्य-गुणांक 1 है तथा $f (0)= p , p \neq 0$ और $f (1)=\frac{1}{3}$ हैं। यदि समीकरणों $f ( x )=0$ तथा $fofofof (x)=0$ का एक उभयनिष्ठ वास्तविक मूल है, तो $f(-3)$ बराबर है
इस प्रश्न में सभी वास्तविक संख्याओं का समुच्चय $R$ द्वारा निर्देशित किया गया है। मान लीजिये कि प्रत्येक $x \in R$ के लिए फलन $f$ इस प्रकार है कि $f(x)+\left(x+\frac{1}{2}\right) f(1-x)=1$. इस स्थिति में $2 f(0)+3 f(1)$ का मान होगा :
फलन $f(x) = \;|px - q|\; + r|x|,\;x \in ( - \infty ,\;\infty )$, जहाँ $p > 0,\;q > 0,\;r > 0$ का केवल एक बिन्दु पर निम्निष्ठ मान होगा यदि
माना $f(\theta ) = \sin \theta (\sin \theta + \sin 3\theta )$, तब $f(\theta )$
यदि फलन $f(x)=\log _e\left(\frac{2 x+3}{4 x^2+x-3}\right)+\cos ^{-1}\left(\frac{2 x-1}{x+2}\right) $ का प्रांत $(\alpha, \beta]$ है, तो $5 \beta-4 \alpha$ का मान बराबर है