Let $V_{\mathrm{r}}$ denote the sum of the first $\mathrm{r}$ terms of an arithmetic progression $(A.P.)$ whose first term is $\mathrm{r}$ and the common difference is $(2 \mathrm{r}-1)$. Let

$T_{\mathrm{I}}=V_{\mathrm{r}+1}-V_{\mathrm{I}}-2 \text { and } \mathrm{Q}_{\mathrm{I}}=T_{\mathrm{r}+1}-\mathrm{T}_{\mathrm{r}} \text { for } \mathrm{r}=1,2, \ldots$

$1.$  The sum $V_1+V_2+\ldots+V_n$ is

$(A)$ $\frac{1}{12} n(n+1)\left(3 n^2-n+1\right)$

$(B)$ $\frac{1}{12} n(n+1)\left(3 n^2+n+2\right)$

$(C)$ $\frac{1}{2} n\left(2 n^2-n+1\right)$

$(D)$ $\frac{1}{3}\left(2 n^3-2 n+3\right)$

$2.$  $\mathrm{T}_{\mathrm{T}}$ is always

$(A)$ an odd number $(B)$ an even number

$(C)$ a prime number $(D)$ a composite number

$3.$  Which one of the following is a correct statement?

$(A)$ $Q_1, Q_2, Q_3, \ldots$ are in $A.P.$ with common difference $5$

$(B)$ $\mathrm{Q}_1, \mathrm{Q}_2, \mathrm{Q}_3, \ldots$ are in $A.P.$ with common difference $6$

$(C)$ $\mathrm{Q}_1, \mathrm{Q}_2, \mathrm{Q}_3, \ldots$ are in $A.P.$ with common difference $11$

$(D)$ $Q_1=Q_2=Q_3=\ldots$

Give the answer question $1,2$ and $3.$

  • [IIT 2007]
  • A

    $B,D,B$

  • B

    $B,D,A$

  • C

    $A,C,B$

  • D

    $D,B,A$

Similar Questions

If ${\log _3}2,\;{\log _3}({2^x} - 5)$ and ${\log _3}\left( {{2^x} - \frac{7}{2}} \right)$ are in $A.P.$, then $x$ is equal to

  • [IIT 1990]

Let $a_1, a_2, a_3, \ldots, a_{100}$ be an arithmetic progression with $a_1=3$ and $S_p=\sum_{i=1}^p a_i, 1 \leq p \leq 100$. For any integer $n$ with $1 \leq n \leq 20$, let $m=5 n$. If $\frac{S_{m m}}{S_n}$ does not depend on $n$, then $a_2$ is

  • [IIT 2011]

The ratio of sum of $m$ and $n$ terms of an $A.P.$ is ${m^2}:{n^2}$, then the ratio of ${m^{th}}$ and ${n^{th}}$ term will be

Let $a_1, a_2, \ldots \ldots, a_n$ be in A.P. If $a_5=2 a_3$ and $a_{11}=18$, then $12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots . \cdot \frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)$ is equal to $..........$.

  • [JEE MAIN 2023]

Different $A.P.$'s are constructed with the first term $100$,the last term $199$,And integral common differences. The sum of the common differences of all such, $A.P$'s having at least $3$ terms and at most $33$ terms is.

  • [JEE MAIN 2022]