$\sum\limits_{r = 1}^n {\log \left( {\frac{{{a^r}}}{{{b^{r - 1}}}}} \right)} $ का मान है
$\frac{n}{2}\log \left( {\frac{{{a^n}}}{{{b^n}}}} \right)$
$\frac{n}{2}\log \left( {\frac{{{a^{n + 1}}}}{{{b^n}}}} \right)$
$\frac{n}{2}\log \left( {\frac{{{a^{n + 1}}}}{{{b^{n - 1}}}}} \right)$
$\frac{n}{2}\log \left( {\frac{{{a^{n + 1}}}}{{{b^{n + 1}}}}} \right)$
माना कि $l_1, l_2, \ldots, l_{100}$ सार्वअंतर (common difference) $d_1$ वाली एक समांतर श्रेढ़ी (arithmetic progression) के क्रमागत पद (consecutive terms) हैं, एवं माना कि $w_1, w_2, \ldots, w_{100}$ सार्वअंतर (common difference) $d_2$ वाली एक दूसरी समांतर श्रेढ़ी (arithmetic progression) के क्रमागत पद है जहाँ $d_1 d_2=10$ है। प्रत्येक $i=1$, $2, \ldots, 100$ के लिए, माना कि $R_i$ एक आयत (rectangle) है जिसकी लम्बाई $l_i$, चौड़ाई $w_i$ एवं क्षेत्रफल $A_i$ है। यदि $A_{51}-A_{50}=1000$ है तब $A_{100}-A_{90}$ का मान . . . . . .है।
यदि ${a^2},\,{b^2},\,{c^2}$ समान्तर श्रेणी में हैं, तो $\frac{a}{{b + c}},\,\frac{b}{{c + a}},\,\frac{c}{{a + b}}$ होंगे
यदि $\log 2,\;\log ({2^n} - 1)$ तथा $\log ({2^n} + 3)$ समान्तर श्रेणी में हों, तो $n =$
यदि A.P. $a _{1} a _{2}, a _{3}, \ldots$ के प्रथम 11 पदों का योगफल $0\left(a_{1} \neq 0\right)$ है और A.P., $a_{1}, a_{3}, a_{5}, \ldots, a_{23}$ का योगफल $ka _{1}$ है, तो $k$ बराबर है -
माना $10 A.P.$, जिनके प्रथम पद $1,2,3, \ldots, 10$ तथा आर्व अंतर क्रमशः $1,3,5, \ldots, 19$ हैं, के $12$ पदों का योग क्रमश: $\mathrm{s}_1, \mathrm{~s}_2, \mathrm{~s}_3, \ldots, \mathrm{s}_{10}$ है। तो $\sum_{\mathrm{i}=1}^{10} \mathrm{~s}_{\mathrm{i}}$ बराबर है