$\sum\limits_{r = 1}^n {\log \left( {\frac{{{a^r}}}{{{b^{r - 1}}}}} \right)} $ का मान है
$\frac{n}{2}\log \left( {\frac{{{a^n}}}{{{b^n}}}} \right)$
$\frac{n}{2}\log \left( {\frac{{{a^{n + 1}}}}{{{b^n}}}} \right)$
$\frac{n}{2}\log \left( {\frac{{{a^{n + 1}}}}{{{b^{n - 1}}}}} \right)$
$\frac{n}{2}\log \left( {\frac{{{a^{n + 1}}}}{{{b^{n + 1}}}}} \right)$
$1$ व $100$ के बीच के उन सभी पूर्णाकों का योगफल जो कि $3$ व $5$ से विभाजित न हों
यदि $4$ पदों वाली एक समान्तर श्रेणी के प्रथम व अन्तिम पदों का योग $8$ एवं शेष दो बीच वाली संख्याओं का गुणनफल $15$ हो, तो श्रेणी की सबसे बड़ी संख्या होगी
$200$ तथा $400$ के मध्य आने वाली उन सभी संख्याओं का योगफल ज्ञात कीजिए जो $7$ से विभाजित हों |
$1 + 3 + 5 + 7 + .........$ $n$ पदों तक का योग है
किसी समान्तर श्रेणी का $n$ वाँ पद $(2n - 1)$ है, तो उस श्रेणी के $n$ पदों का योग होगा