$\sum\limits_{r = 1}^n {\log \left( {\frac{{{a^r}}}{{{b^{r - 1}}}}} \right)} $ का मान है
$\frac{n}{2}\log \left( {\frac{{{a^n}}}{{{b^n}}}} \right)$
$\frac{n}{2}\log \left( {\frac{{{a^{n + 1}}}}{{{b^n}}}} \right)$
$\frac{n}{2}\log \left( {\frac{{{a^{n + 1}}}}{{{b^{n - 1}}}}} \right)$
$\frac{n}{2}\log \left( {\frac{{{a^{n + 1}}}}{{{b^{n + 1}}}}} \right)$
श्रेणी $101 + 99 + 97 + ..... + 47$ में पदों की संख्या है
यदि A.P. $a _{1} a _{2}, a _{3}, \ldots$ के प्रथम 11 पदों का योगफल $0\left(a_{1} \neq 0\right)$ है और A.P., $a_{1}, a_{3}, a_{5}, \ldots, a_{23}$ का योगफल $ka _{1}$ है, तो $k$ बराबर है -
समुच्चय $\{\alpha \in\{1,2, \ldots, 100\}: \operatorname{HCF}(\alpha, 24)=1\}$ के सभी अवयवों का योगफल होगा $..............$
यदि तीन भिन्न संख्याएं $a, b, c$ गुणोत्तर श्रेढ़ी में है तथा समीकरण $ax ^{2}+2 bx + c =0$ और $dx ^{2}+2 ex +$ $f=0$ का एक उभयनिष्ठ मूल है, तो निम्न में से कौन-सा एक कथन सत्य है ?
माना $a_1=8, a_2, a_3, \ldots a_n$ एक $A.P.$ हैं। यदि इसके प्रथम चार पदों का योग $50$ है तथा इसके अन्तिम चार पदों का योग $170$ है, तब इसके मध्य दो पदों का गुणनफल _____________हैं।