क्रमित युग्मों $( r , k )$, जिनके लिए $6 \cdot{ }^{35} C _{ r }=\left( k ^{2}-3\right)^{36} C _{ r +1}$, जहाँ $k$ एक पूर्णांक हैं, की संख्या है :-
$3$
$2$
$4$
$6$
$\sum \limits_{ k =0}^6{ }^{51- k } C _3$ बराबर है -
छः विभिन्न उपन्यासों और $3$ विभिन्न शब्दकोशों से $4$ उपन्यास और $1$ शब्दकोश चुन कर एक अल्मारी में एक पंक्ति में इस प्रकार व्यवस्थित किया जाना है कि शब्दकोश सदा बीच में रहे। तब ऐसे विन्यासों (arrangements) की संख्या है :
यदि $^n{C_r} = {\,^n}{C_{r - 1}}$ और $^n{P_r}{ = ^n}{P_{r + 1}}$, तो $n$ का मान है
दो कलश हैं। कलश $A$ में $3$ भिन्न लाल गेंदें हैं तथा कलश $B$ में $9$ भिन्न नीली गेंदें हैं। प्रत्येक कलश में से दो गेंदें यादृच्छया निकालकर दूसरे कलश में डाली गई हैं। यह प्रक्रिया जितने तरीकों से की जा सकती है, वह है
यदि ${ }^{n} C _{8}={ }^{n} C _{2},$ तो ${ }^{n} C _{2}$ ज्ञात कीजिए।