7.Binomial Theorem
normal

શ્રેણી $aC_0 + (a + b)C_1 + (a + 2b)C_2 + ..... + (a + nb)C_n$ નો સરવાળો મેળવો 

જ્યાં $Cr's$ એ $(1 + x)^n, n \in N$ ના વિસ્તરણમાં સહગુણક દર્શાવે છે 

A

$(a + 2nb)2^n$

B

$(2a + nb)2^n$

C

$(a +nb)2^{n - 1}$

D

$(2a + nb)2^{n - 1}$

Solution

Simplifying we get

$a\left[{ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2}+\ldots .^{n} C_{n}\right]+b\left[{ }^{n} C_{1}+2{ }^{n} C_{2}+3{ }^{n} C_{3}+\ldots n^{n} C_{n}\right]$

$=a 2^{n}+b\left(\frac{d(1+x)^{n}}{d x}\right)_{x=1}$

$=a 2^{n}+b\left(n(1+x)^{n-1}\right)_{x=1}$

$=a 2^{n}+b\left(n 2^{n-1}\right)$

$=(2 a+b n) 2^{n-1}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.