व्यंजक ${[x + {x^{{{\log }_{10}}(x)}}]^5}$ में $x$ का मान है, यदि इसके विस्तार में तीसरा पद $106$ हो
$10$
$11$
$12$
इनमें से कोई नहीं
$\left(x^4-\frac{1}{x^3}\right)^{15}$ के प्रसार में $x^{18}$ का गुणांक है
यदि $\left(1+x^{\log _{2} x}\right)^{5}$ के द्विपद प्रसार में तीसरा पद $2560$ के बराबर है, तो $x$ का एक संभव मान है
${\left( {{x^4} - \frac{1}{{{x^3}}}} \right)^{15}}$ के विस्तार में ${x^{32}}$ का गुणांक होगा
माना किसी धनपूर्णाक $n$ के लिए, $(1+ x )^{ n +5}$ के द्विपद प्रसार में तीन क्रमागत पदों के गुणांक $5: 10: 14$ के अनुपात में हैं, तो इस प्रसार में सब से बड़ा गुणांक है
निम्नलिखित प्रसारों में मध्य पद ज्ञात कीजिए
$\left(3-\frac{x^{3}}{6}\right)^{7}$