The value of $\left| {\,\begin{array}{*{20}{c}}{{1^2}}&{{2^2}}&{{3^2}}\\{{2^2}}&{{3^2}}&{{4^2}}\\{{3^2}}&{{4^2}}&{{5^2}}\end{array}\,} \right|$ is

  • A

    $8$

  • B

    $-8$

  • C

    $400$

  • D

    $1$

Similar Questions

If $\omega $ be a complex cube root of unity, then $\left| {\,\begin{array}{*{20}{c}}1&\omega &{ - {\omega ^2}/2}\\1&1&1\\1&{ - 1}&0\end{array}\,} \right| = $

Let $M$ and $N$ be two $3 \times 3$ matrices such that $M N=N M$. Further, if $M \neq N^2$ and $M^2=N^4$, then

$(A)$ determinant of $\left( M ^2+ MN ^2\right)$ is $0$

$(B)$ there is a $3 \times 3$ non-zero matrix $U$ such that $\left( M ^2+ MN ^2\right) U$ is the zero matrix

$(C)$ determinant of $\left( M ^2+ MN ^2\right) \geq 1$

$(D)$ for a $3 \times 3$ matrix $U$, if $\left( M ^2+ MN ^2\right) U$ equals the zero matrix then $U$ is the zero matrix

  • [IIT 2014]

If $\omega $ is cube root of unity, then root of the equation $\left| {\begin{array}{*{20}{c}}
  {x + 2}&\omega &{{\omega ^2}} \\ 
  \omega &{x + 1 + {\omega ^2}}&1 \\ 
  {{\omega ^2}}&1&{x + 1 + \omega } 
\end{array}} \right| = 0$ is 

If $\left| {\,\begin{array}{*{20}{c}}{x - 1}&3&0\\2&{x - 3}&4\\3&5&6\end{array}\,} \right| = 0$, then $x =$

The value of a for which the system of equations ${a^3}x + {(a + 1)^3}y + {(a + 2)^3}z = 0,$ $ax + (a + 1)y + (a + 2)z = 0,$ $x + y + z = 0,$ has a non zero solution is