$\left| {\,\begin{array}{*{20}{c}}{{1^2}}&{{2^2}}&{{3^2}}\\{{2^2}}&{{3^2}}&{{4^2}}\\{{3^2}}&{{4^2}}&{{5^2}}\end{array}\,} \right|$=
$8$
$-8$
$400$
$1$
જો ${2^{{a_1}}},{2^{{a_2}}},{2^{{a_3}}},{......2^{{a_n}}}$ એ સમગુણોતર શ્રેણીમાં હોય તો $\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{a_2}}&{{a_3}} \\
{{a_{n + 1}}}&{{a_{n + 2}}}&{{a_{n + 3}}} \\
{{a_{2n + 1}}}&{{a_{2n + 2}}}&{{a_{2n + 3}}}
\end{array}} \right|$ ની કિમંત મેળવો.
$\left| {\,\begin{array}{*{20}{c}}{1/a}&1&{bc}\\{1/b}&1&{ca}\\{1/c}&1&{ab}\end{array}\,} \right| = $
સમીકરણ $\left| {\,\begin{array}{*{20}{c}}{a + x}&{a - x}&{a - x}\\{a - x}&{a + x}&{a - x}\\{a - x}&{a - x}&{a + x}\end{array}\,} \right| = 0$ નો ઉકેલ મેળવો.
$\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&2&3\\1&3&6\end{array}\,} \right| \ne . . . .$
જો ${a_1},{a_2},{a_3}.....{a_n}....$ એ સમગુણોતર શ્રેણીમાં હોય તો $\left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}}\\{\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}}\end{array}\,} \right|$ ની કિમંત મેળવો.