જો ${U_n} = \left| {\,\begin{array}{*{20}{c}}n&1&5\\{{n^2}}&{2N + 1}&{2N + 1}\\{{n^3}}&{3{N^2}}&{3N}\end{array}\,} \right|$ તો $\sum\limits_{n = 1}^N {{U_n},} $ મેળવો.
$0$
$1$
$-1$
એકપણ નહી.
જો $\alpha $, $\beta$ $\gamma$, $\delta$ એ $z^5=1$ ના કાલ્પનિક બીજ હોય તો $\left| {\begin{array}{*{20}{c}}
{{e^\alpha }}&{{e^{2\alpha }}}&{{e^{3\alpha + 1}}}&{ - {e^{ - \delta }}} \\
{{e^\beta }}&{{e^{2\beta }}}&{{e^{3\beta + 1}}}&{ - {e^{ - \delta }}} \\
{{e^\gamma }}&{{e^{2\gamma }}}&{{e^{3\gamma + 1}}}&{ - {e^{ - \delta }}}
\end{array}} \right|$ મેળવો.
સાબિત કરો કે $\left|\begin{array}{ccc}a^{2} & b c & a c+c^{2} \\ a^{2}+a b & b^{2} & a c \\ a b & b^{2}+b c & c^{2}\end{array}\right|=4 a^{2} b^{2} c^{2}$
સાબિત કરો કે, $\Delta=\left|\begin{array}{ccc}
a+b x & c+d x & p+q x \\
a x+b & c x+d & p x+q \\
u & v & w
\end{array}\right|=\left(1-x^{2}\right)\left|\begin{array}{lll}
a & c & p \\
b & d & q \\
u & v & m
\end{array}\right|$
જો $\omega $ એ એકનું કાલ્પનિક બીજ હોય , તો $\left| {\,\begin{array}{*{20}{c}}{x + 1}&\omega &{{\omega ^2}}\\\omega &{x + {\omega ^2}}&1\\{{\omega ^2}}&1&{x + \omega }\end{array}\,} \right| = $
$\left| {\,\begin{array}{*{20}{c}}{{b^2} + {c^2}}&{{a^2}}&{{a^2}}\\{{b^2}}&{{c^2} + {a^2}}&{{b^2}}\\{{c^2}}&{{c^2}}&{{a^2} + {b^2}}\end{array}\,} \right| = $