3 and 4 .Determinants and Matrices
hard

જો ${U_n} = \left| {\,\begin{array}{*{20}{c}}n&1&5\\{{n^2}}&{2N + 1}&{2N + 1}\\{{n^3}}&{3{N^2}}&{3N}\end{array}\,} \right|$ તો $\sum\limits_{n = 1}^N {{U_n},} $ મેળવો.

A

$0$

B

$1$

C

$-1$

D

એકપણ નહી.

Solution

(a) $\sum\limits_{n = 1}^N {{U_n} = } \left| {\,\begin{array}{*{20}{c}}{\frac{{N(N + 1)}}{2}}&1&5\\{\frac{{N(N + 1)(2N + 1)}}{6}}&{2N + 1}&{2N + 1}\\{{{\left\{ {\frac{{N(N + 1)}}{2}} \right\}}^2}}&{3{N^2}}&{3N}\end{array}\,} \right|$

$ = \frac{{N(N + 1)}}{{12}}\left| {\,\begin{array}{*{20}{c}}6&1&5\\{4N + 2}&{2N + 1}&{2N + 1}\\{3N(N + 1)}&{3{N^2}}&{3N}\end{array}\,} \right|$

$ = \left| {\,\begin{array}{*{20}{c}}6&1&6\\{4N + 2}&{2N + 1}&{4N + 2}\\{3N(N + 1)}&{3{N^2}}&{3N(N + 1)}\end{array}\,} \right| = 0$,

$\{$Applying ${C_3} \to {C_3} + {C_2}\} $.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.