$\cot {70^o} + 4\cos {70^o}$ का मान होगा
$\frac{1}{{\sqrt 3 }}$
$\sqrt 3 $
$2\sqrt 3 $
$\frac{1}{2}$
निम्नलिखित को सिद्ध कीजिए
$\frac{\sin x+\sin 3 x}{\cos x+\cos 3 x}=\tan 2 x$
दी गई आकृति में $\theta_1+\theta_2=\frac{\pi}{2}$ तथा
$\sqrt{3}(\mathrm{BE})=4(\mathrm{AB})$ है। यदि $\triangle \mathrm{CAB}$ का क्षेत्रफल
$2 \sqrt{3}-3$ वर्ग इकाई है, जब $\frac{\theta_2}{\theta_1}$ अधिकतम है, तो
$\triangle \mathrm{CED}$ का परिमाप (इकाई में) बराबर है :
$\frac{{\sin 3\theta + \sin 5\theta + \sin 7\theta + \sin 9\theta }}{{\cos 3\theta + \cos 5\theta + \cos 7\theta + \cos 9\theta }} = $
$\cos \left(\frac{2 \pi}{7}\right)+\cos \left(\frac{4 \pi}{7}\right)+\cos \left(\frac{6 \pi}{7}\right)$ का मान बराबर होगा।
यदि $x = \cos 10^\circ \cos 20^\circ \cos 40^\circ $ हो, तो $x$ का मान होगा