The value of $\theta$ lying between $\theta = 0$ and $\theta = \pi /2$ and satisfying the equation : $\left| {\,\begin{array}{*{20}{c}} {1\,\, + \,\,{{\sin }^2}\,\theta }&{{{\cos }^2}\,\theta }&{4\,\sin \,4\,\theta }\\ {{{\sin }^2}\,\theta }&{1\,\, + \,\,{{\cos }^2}\,\theta }&{4\,\sin \,4\,\theta }\\ {{{\sin }^2}\,\theta }&{{{\cos }^2}\,\theta }&{1\,\, + \,\,4\,\sin \,4\,\theta } \end{array}\,} \right|$ $= 0$ are :

  • A

    $\frac{{7\,\pi }}{{24}}$

  • B

    $\frac{{5\,\pi }}{{24}}$

  • C

    $\frac{{11\,\pi }}{{24}}$

  • D

    both $(A)$ and $(C)$

Similar Questions

If $p, q, r, s$ are in $A.P.$ and $f (x) =$ $\left| {\,\begin{array}{*{20}{c}} {p\,\, + \,\,\sin \,x}&{q\,\, + \,\,\sin \,x}&{p\,\, - \,\,r\,\, + \,\,\sin \,x}\\ {q\,\, + \,\,\sin \,x}&{r\,\, + \,\,\sin \,x}&{ - \,1\,\, + \,\,\sin \,x}\\ {r\,\, + \,\,\sin \,x}&{s\,\, + \,\,\sin \,x}&{s\,\, - \,\,q\,\, + \,\,\sin \,x} \end{array}\,} \right|$ such that $f (x)dx = - 4$ then the common difference of the $A.P.$ can be :

Evaluate $\Delta=\left|\begin{array}{lll}1 & a & b c \\ 1 & b & c a \\ 1 & c & a b\end{array}\right|$

Evaluate $\left|\begin{array}{ccc}102 & 18 & 36 \\ 1 & 3 & 4 \\ 17 & 3 & 6\end{array}\right|$

By using properties of determinants, show that:

$\left|\begin{array}{lll}x & x^{2} & y z \\ y & y^{2} & z x \\ z & z^{2} & x y\end{array}\right|=(x-y)(y-z)(z-x)(x y+y z+z x)$

At what value of $x,$ will $\left| {\,\begin{array}{*{20}{c}}{x + {\omega ^2}}&\omega &1\\\omega &{{\omega ^2}}&{1 + x}\\1&{x + \omega }&{{\omega ^2}}\end{array}\,} \right| = 0$