Show that
$\tan 3 x \tan 2 x \tan x=\tan 3 x-\tan 2 x-\tan x$
We know that $3 x=2 x+x$
Therefore, $\tan 3 x=\tan (2 x+x)$
or $\tan 3 x=\frac{\tan 2 x+\tan x}{1-\tan 2 x \tan x}$
or $\tan 3 x-\tan 3 x \tan 2 x \tan x=\tan 2 x+\tan x$
or $\tan 3 x-\tan 2 x-\tan x=\tan 3 x \tan 2 x \tan x$
or $\tan 3 x \tan 2 x \tan x=\tan 3 x-\tan 2 x-\tan x$
$\frac{{\sin {{81}^o} + \cos {{81}^o}}}{{\sin {{81}^o} - \cos {{81}^o}}}$ is equal to
The value of $\sin 600^\circ \cos 330^\circ + \cos 120^\circ \sin 150^\circ $ is
Prove that $=\frac{\sin 5 x-2 \sin 3 x+\sin x}{\cos 5 x-\cos x}=\tan x$
Let $\frac{\pi}{2} < x < \pi$ be such that $\cot x=\frac{-5}{\sqrt{11}}$. Then $\left(\sin \frac{11 x}{2}\right)(\sin 6 x-\cos 6 x)+\left(\cos \frac{11 x}{2}\right)(\sin 6 x+\cos 6 x)$ is equal to
If $A + B + C = {180^o},$ then the value of $(\cot B + \cot C)$ $(\cot C + \cot A)\,\,(\cot A + \cot B)$ will be