The value of $sin\,10^o$ $sin\,30^o$ $sin\,50^o$ $sin\,70^o$ is
$\frac{1}{{36}}$
$\frac{1}{{32}}$
$\frac{1}{{18}}$
$\frac{1}{{16}}$
If $\cos \theta = \frac{3}{5}$ and $\cos \phi = \frac{4}{5},$ where $\theta $ and $\phi $ are positive acute angles, then $\cos \frac{{\theta - \phi }}{2} = $
$\frac{{\sec 8A - 1}}{{\sec 4A - 1}} = $
$cosec^2\theta $ = $\frac{4xy}{(x +y)^2}$ is true if and only if
If $\tan \alpha = \frac{1}{7}$ and $\sin \beta = \frac{1}{{\sqrt {10} }}\left( {0 < \alpha ,\,\beta < \frac{\pi }{2}} \right)$, then $2\beta $ is equal to
If $\alpha$, $\beta$,$\gamma$ are positive number such that $\alpha + \beta = \pi$ and $\beta + \gamma = \alpha$, then $tan\ \alpha$ is equal to - (where $\gamma \ne n\pi ,n \in I$ )