The value of k so that ${x^2} + {y^2} + kx + 4y + 2 = 0$ and $2({x^2} + {y^2}) - 4x - 3y + k = 0$ cut orthogonally is

  • A

    $\frac{{10}}{3}$

  • B

    $\frac{{ - 8}}{3}$

  • C

    $\frac{{ - 10}}{3}$

  • D

    $\frac{8}{3}$

Similar Questions

Two circles ${S_1} = {x^2} + {y^2} + 2{g_1}x + 2{f_1}y + {c_1} = 0$ and ${S_2} = {x^2} + {y^2} + 2{g_2}x + 2{f_2}y + {c_2} = 0$ cut each other orthogonally, then

The equation of the circle which passes through the intersection of ${x^2} + {y^2} + 13x - 3y = 0$and $2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$ and whose centre lies on $13x + 30y = 0$ is

The circles ${x^2} + {y^2} + 4x + 6y + 3 = 0$ and $2({x^2} + {y^2}) + 6x + 4y + C = 0$ will cut orthogonally, if $C$ equals

If the circles ${x^2} + {y^2} = 4,{x^2} + {y^2} - 10x + \lambda = 0$ touch externally, then $\lambda $ is equal to 

If a circle $C,$  whose radius is $3,$ touches externally the circle, $x^2 + y^2 + 2x - 4y - 4 = 0$ at the point $(2, 2),$  then the length of the intercept cut by circle $c,$  on the $x-$ axis is equal to

  • [JEE MAIN 2018]