Gujarati
10-1.Circle and System of Circles
medium

The value of k so that ${x^2} + {y^2} + kx + 4y + 2 = 0$ and $2({x^2} + {y^2}) - 4x - 3y + k = 0$ cut orthogonally is

A

$\frac{{10}}{3}$

B

$\frac{{ - 8}}{3}$

C

$\frac{{ - 10}}{3}$

D

$\frac{8}{3}$

Solution

(c) Here, ${g_1} = \frac{k}{2},\,{f_1} = 2,\,{c_1} = 2$

${g_2} = – 1,\,{f_2} = \frac{{ – 3}}{4},\,{c_2} = \frac{k}{2}$

Condition for orthogonal intersection,

==> $2({g_1}{g_2} + {f_1}{f_2}) = {c_1} + {c_2}$

==> $2\,\left[ {\frac{{ – k}}{2} + \left( {\frac{{ – 3}}{2}} \right)} \right] = 2 + \frac{k}{2}$

==> $ – k – 3 = 2 + \frac{k}{2}$

==> $\frac{{3k}}{2} = – 5$;

$k = \frac{{ – 10}}{3}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.