The value of the determinant $\left| {\,\begin{array}{*{20}{c}}2&8&4\\{ - 5}&6&{ - 10}\\1&7&2\end{array}\,} \right|$is

  • A

    $-440$

  • B

    $0$

  • C

    $328$

  • D

    $488$

Similar Questions

if $\left| \begin{gathered}
   - 6\ \ \,\,1\ \ \,\,\lambda \ \  \hfill \\
  \,0\ \ \,\,\,\,3\ \ \,\,7\ \  \hfill \\
   - 1\ \ \,\,0\ \ \,\,5\ \  \hfill \\ 
\end{gathered}  \right| = 5948 $, then $\lambda $  is

The value of $\left| {\,\begin{array}{*{20}{c}}{41}&{42}&{43}\\{44}&{45}&{46}\\{47}&{48}&{49}\end{array}\,} \right| = $

The system of linear equations $x + y + z = 2$, $2x + y - z = 3,$ $3x + 2y + kz = 4$has a unique solution if

Let $\mathrm{A}=\left[\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right],$ where $0 \leq \theta \leq 2 \pi$. Then

Consider system of equations in $x$ , $y$ and $z$

$12x + by + cz = 0$ ;   $ax + 24y + cz = 0$  ;   $ax + by + 36z = 0$ .

(where $a$ , $b$ , $c$ are real numbers, $a \ne 12$ , $b \ne 24$ , $c \ne 36$ ).

If system of equation has solution and $z \ne 0$, then value of  $\frac{1}{{a - 12}} + \frac{2}{{b - 24}} + \frac{3}{{c - 36}}$ is