सारणिक $\left| {\,\begin{array}{*{20}{c}}{10!}&{11!}&{12!}\\{11!}&{12!}&{13!}\\{12!}&{13!}&{14!}\end{array}\,} \right|$ का मान होगा

  • A

    $2\,(10!\,\,11!)$

  • B

    $2\,(10\,!\,\,13\,!)$

  • C

    $2\,(10!\,\,11!\,\,12!)$

  • D

    $2\,(11\,!\,\,12!\,\,13!)$

Similar Questions

यदि $A \ne O$ और $B \ne O$,   $n × n $ कोटि के आव्यूह इस प्रकार हैं कि $AB = O,$ तो

सारणिक $\Delta = \left| {\,\begin{array}{*{20}{c}}{a + x}&b&c\\b&{x + c}&a\\c&a&{x + b}\end{array}\,} \right|$,का गुणनखण्ड होगा

$\left| {\,\begin{array}{*{20}{c}}{19}&{17}&{15}\\9&8&7\\1&1&1\end{array}\,} \right| = $

निकाय $(k + 1)x + 8y = 4k,$ $kx + (k + 3)y = 3k - 1$ के अनन्त हलों के लिये  $ k$  के मानों की संख्या होगी

  • [IIT 2002]

समीकरणों  ${x_2} - {x_3} = 1,\,\, - {x_1} + 2{x_3} =  - 2,$ ${x_1} - 2{x_2} = 3$ के हलों की संख्या है