The value of the expression $(sinx + cosecx)^2 + (cosx + secx)^2 - ( tanx + cotx)^2$ wherever defined is equal to
$0$
$5$
$7$
$9$
Prove that: $\frac{\sin 5 x+\sin 3 x}{\cos 5 x+\cos 3 x}=\tan 4 x$
If $A = 580^o$ then which one of the following is true
If $sin t + cos t = \frac{1}{5}$ then $tan \frac{t}{2}$ is equal to :
$\left( {\frac{{\sin 2A}}{{1 + \cos 2A}}} \right)\,\left( {\frac{{\cos A}}{{1 + \cos A}}} \right)= $
The value of $\sin \frac{\pi }{{14}}\sin \frac{{3\pi }}{{14}}\sin \frac{{5\pi }}{{14}}\sin \frac{{7\pi }}{{14}}\sin \frac{{9\pi }}{{14}}\sin \frac{{11\pi }}{{14}}\sin \frac{{13\pi }}{{14}}$ is equal to