The value of the expression $(sinx + cosecx)^2 + (cosx + secx)^2 - ( tanx + cotx)^2$ wherever defined is equal to

  • A

    $0$

  • B

    $5$

  • C

    $7$

  • D

    $9$

Similar Questions

The value of $\frac{{3 + \cot {{76}^o}\cot {{16}^o}}}{{\cot {{76}^o} + \cot {{16}^o}}}$ 

The expression,$\frac{{\tan \,\left( {{\textstyle{{3\,\pi } \over 2}}\,\, - \,\,\alpha } \right)\,\,\,\cos \,\left( {{\textstyle{{3\,\pi } \over 2}}\,\, - \,\,\alpha } \right)}}{{\cos \,(2\,\pi \,\, - \,\alpha )}}$ $+ cos \left( {\alpha \,\, - \,\,\frac{\pi }{2}} \right) \,sin (\pi -\alpha ) + cos (\pi +\alpha ) sin \,\left( {\alpha \,\, - \,\,\frac{\pi }{2}} \right)$ when simplified reduces to :

If $A + B + C = \pi ,$ then $\cos \,\,2A + \cos \,\,2B + \cos \,\,2C = $

In triangle $ABC$, the value of $\sin 2A + \sin 2B + \sin 2C$ is equal to

$\frac{{\cos 12^\circ - \sin 12^\circ }}{{\cos 12^\circ + \sin 12^\circ }} + \frac{{\sin 147^\circ }}{{\cos 147^\circ }} = $