- Home
- Standard 11
- Mathematics
$20$ प्रेक्षणों का प्रसरण $5$ है। यदि प्रत्येक प्रेक्षण को $2$ से गुणा किया गया हो तो प्राप्त प्रेक्षणों का प्रसरण ज्ञात कीजिए।
Solution
Let the observations be $x_{1}, x_{2}, \ldots, x_{20}$ and $\bar{x}$ be their mean. Given that variance $=5$ and $n=20 .$ We know that
Variance $\left( {{\sigma ^2}} \right) = \frac{1}{n}\sum\limits_{i = 1}^{20} {{{\left( {{x_i} – \bar x} \right)}^2}} $
i.e., $5 = \frac{1}{{20}}\sum\limits_{i = 1}^{20} {{{\left( {{x_i} – \bar x} \right)}^2}} $
or $\sum\limits_{i = 1}^{20} {{{\left( {{x_i} – \bar x} \right)}^2}} = 100$ …….$(1)$
If each observation is multiplied by $2,$ and the new resulting observations are $y_{i},$ then
$y_{i}=2 x_{i} \text { i.e., } x_{i}=\frac{1}{2} y_{i}$
Therefore $\bar y = \frac{1}{n}\sum\limits_{i = 1}^{20} {{y_i}} = \frac{1}{{20}}\sum\limits_{i = 1}^{20} {2{x_i} = 2.\frac{1}{{20}}\sum\limits_{i = 1}^{20} {{x_i}} } $
i.e. $\bar{y}=2 \bar{x} \quad$ or $\quad \bar{x}=\frac{1}{2} \bar{y}$
Substituting the values of $x_{i}$ and $\bar{x}$ in $(1),$ we get
${\sum\limits_{i = 1}^{20} {\left( {\frac{1}{2}{y_i} – \frac{1}{2}\bar y} \right)} ^2} = 100$ i.e., $\sum\limits_{i = 1}^{20} {{{\left( {{y_i} – \bar y} \right)}^2} = 400} $
Thus the variance of new observations $=\frac{1}{20} \times 400=20=2^{2} \times 5$
Similar Questions
निम्नलिखित बारंबारता बंटन के लिए माध्य व प्रसरण ज्ञात कीजिए।
वर्ग | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ |
बारंबारता | $5$ | $8$ | $15$ | $16$ | $6$ |
आंकडों
$x_i$ | $0$ | $1$ | $5$ | $6$ | $10$ | $12$ | $17$ |
$f_i$ | $3$ | $2$ | $3$ | $2$ | $6$ | $3$ | $3$ |
का प्रसरण $\sigma^2$ बराबर है ……….
माना बारंबारता बंटन
$\mathrm{x}$ | $\mathrm{x}_{1}=2$ | $\mathrm{x}_{2}=6$ | $\mathrm{x}_{3}=8$ | $\mathrm{x}_{4}=9$ |
$\mathrm{f}$ | $4$ | $4$ | $\alpha$ | $\beta$ |
के माध्य तथा प्रसरण क्रमशः $6$ तथा $6.8$ हैं। यदि $x _{3}$ को $8$ से $7$ कर दिया जाए, तो नये आँकड़ों का माध्य होगा