- Home
- Standard 11
- Mathematics
पहली $50$ सम प्राकृत संख्याओं का प्रसरण है:
$437$
$\frac{{437}}{4}$
$\frac{{833}}{4}$
$833$
Solution
$2,4,6,8,……,98,100$
${\sigma ^2} = \frac{{\sum x_1^2}}{n} – {\left( {\overline {.x} } \right)^2}$
$\frac{{{2^2} + {4^2} + {6^2} + …. + {{100}^2}}}{{50}}$$ – {\left( {\frac{{2 + 4 + 6 + …. + 100}}{{50}}} \right)^2}$
${i_1} = \frac{{{2^2} + {4^2} + {6^2} + …. + {{100}^2}}}{{50}}$
$ = {2^2}\frac{{{1^2} + {2^2} + {3^2} + … + {{50}^2}}}{{50}}$
$ = \frac{{{2^2}}}{{50}} \times 50\left( {50 + 1} \right)\left( {100 + 1} \right)$
$ = 3434$
${i_2} = {\left( {\frac{{2 + 4 + 6 + ….. + 100}}{{50}}} \right)^2}$
$ = {\left( {\frac{{50 \times \frac{{2 + 100}}{2}}}{{50}}} \right)^2}$
$ = {\left( {51} \right)^2}$
${\sigma ^2} = 3434 – 2661 = 833$
Similar Questions
निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।
${x_i}$ | $92$ | $93$ | $97$ | $98$ | $102$ | $104$ | $109$ |
${f_i}$ | $3$ | $2$ | $3$ | $2$ | $6$ | $3$ | $3$ |