- Home
- Standard 11
- Mathematics
પ્રથમ $50 $ યુગ્મ પ્રાકૃતિક સંખ્યાઓનું વિચરણ .. . . . . .છે.
$437$
$\frac{{437}}{4}$
$\frac{{833}}{4}$
$833$
Solution
$2,4,6,8,……,98,100$
${\sigma ^2} = \frac{{\sum x_1^2}}{n} – {\left( {\overline {.x} } \right)^2}$
$\frac{{{2^2} + {4^2} + {6^2} + …. + {{100}^2}}}{{50}}$$ – {\left( {\frac{{2 + 4 + 6 + …. + 100}}{{50}}} \right)^2}$
${i_1} = \frac{{{2^2} + {4^2} + {6^2} + …. + {{100}^2}}}{{50}}$
$ = {2^2}\frac{{{1^2} + {2^2} + {3^2} + … + {{50}^2}}}{{50}}$
$ = \frac{{{2^2}}}{{50}} \times 50\left( {50 + 1} \right)\left( {100 + 1} \right)$
$ = 3434$
${i_2} = {\left( {\frac{{2 + 4 + 6 + ….. + 100}}{{50}}} \right)^2}$
$ = {\left( {\frac{{50 \times \frac{{2 + 100}}{2}}}{{50}}} \right)^2}$
$ = {\left( {51} \right)^2}$
${\sigma ^2} = 3434 – 2661 = 833$
Similar Questions
નીચે આપેલ આવૃત્તિ વિતરણનું વિચરણ શોધો.
$class$ |
$0 – 2$ |
$2 – 4$ |
$4 – 6$ |
$6 – 8$ |
$8 – 10$ |
$10 – 12$ |
$f_i$ |
$2$ |
$7$ |
$12$ |
$19$ |
$9$ |
$ 1$ |
નીચે આપેલ માહિતી માટે વિચરણ અને પ્રમાણિત વિચલન શોધો :
${x_i}$ | $4$ | $8$ | $11$ | $17$ | $20$ | $24$ | $32$ |
${f_i}$ | $3$ | $5$ | $9$ | $5$ | $4$ | $3$ | $1$ |
જો તો વિચરણ $\sigma^2$ =…………………………..
$x_i$ | $0$ | $1$ | $5$ | $6$ | $10$ | $12$ | $17$ |
$f_i$ | $3$ | $2$ | $3$ | $2$ | $6$ | $3$ | $3$ |