There are $5$ volumes of Mathematics among $25$ books. They are arranged on a shelf in random order. The probability that the volumes of Mathematics stand in increasing order from left to right (the volumes are not necessarily kept side by side) is
$\frac{1}{{5\,!}}$
$\frac{{50\,!}}{{55\,!}}$
$\frac{1}{{{{50}^5}}}$
None of these
All the spades are taken out from a pack of cards.From these cards, cards are drawn one by one without replacement till the ace of spade comes. The probability that the ace of spade comes in the $4^{th}$ draw is
If Mohan has $3$ tickets of a lottery containing $3$ prizes and $9$ blanks, then his chance of winning prize are
A bag contains $4$ white, $5$ red and $6$ black balls. If two balls are drawn at random, then the probability that one of them is white is
Let $C_1$ and $C_2$ be two biased coins such that the probabilities of getting head in a single toss are $\frac{2}{3}$ and $\frac{1}{3}$, respectively. Suppose $\alpha$ is the number of heads that appear when $C _1$ is tossed twice, independently, and suppose $\beta$ is the number of heads that appear when $C _2$ is tossed twice, independently, Then probability that the roots of the quadratic polynomial $x^2-\alpha x+\beta$ are real and equal, is
Two different families $A$ and $B$ are blessed with equal number of children. There are $3$ tickets to be distributed amongst the children of these families so that no child gets more than one ticket . If the probability that all the tickets go to the children of the family $B$ is $\frac {1}{12}$ , then the number of children in each family is?