एक $‘R’$ त्रिज्या के ठोस गोले पर एकसमान रूप से आवेश वितरित है। विद्युत क्षेत्र $‘E’$ तथा गोले के केन्द्र से दूरी $‘r’$ के बीच क्या सम्बन्ध है ( r , R से कम है )
$E \propto {r^{ - 2}}$
$E \propto {r^{ - 1}}$
$E \propto r$
$E \propto {r^2}$
प्रति इकाई आवेश $q$ वाले अनन्त लम्बी नली का उसकी अक्ष से $r$ दूरी पर वैद्युत क्षेत्र की तीव्रता होती है
$10 \,cm$ त्रिज्या के किसी गोलीय चालक पर $3.2 \times 10^{-7}\, C$ आवेश एकसमान रूप से वितरित है।इस गोले के केन्द्र से $15\, cm$ दूरी पर विध्यूत क्षेत्र का परिमाण क्या है ?
$\left(\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} Nm ^{2} / C ^{2}\right)$
एक ठोस धात्विक गोले पर $ + \,3Q$ आवेश है। इस गोले के संकेन्द्रीय एक चालक गोलीय कोश है जिस पर आवेश $ - Q$ है। गोले की त्रिज्या $a$ तथा गोलीय कोश की त्रिज्या $b(b < a)$ है। केन्द्र से $R$ दूरी पर $(a < R < b)$ विद्युत क्षेत्र कितना है
एक त्रिज्या $R_1$ तथा एक समान आवेश घनत्व का गोलाकर आवेश मूल बिन्दु $O$ पर केन्द्रित है। इसमें एक $R_2$ त्रिज्या तथा $P$ पर केन्द्रित एक गोलाकार गुहिका (cavity), जहाँ $O P=a=R_1-R_2$ है, वनाई जाती है। (चित्र देखें)। यदि गुहिका के अन्दर स्थिति $\vec{r}$ पर विधुत क्षेत्र $\overline{ E }(\overrightarrow{ r })$ है, तव सही कथन है (हैं)
माना $\sigma$ चित्रानुसार दो अनन्त पतली समतल शीटो का एकसमान पृष्ठीय आवेश घनत्व है। तब तीन विभिन्न प्रभागो में विद्युत क्षेत्र के मान $E_{\mathrm{I}}, E_{\mathrm{II}}$ व $E_{\mathrm{II}}$ होगें